import inspect
import itertools
import re
import string
from operator import itemgetter
from typing import Any, Dict, Generator, List, Match, Optional, Pattern, Tuple, Union

from .._typing import T_num, T_obj, T_obj_iter, T_obj_list
from .clustering import cluster_objects
from .generic import to_list
from .geometry import objects_to_bbox

DEFAULT_X_TOLERANCE = 3
DEFAULT_Y_TOLERANCE = 3
DEFAULT_X_DENSITY = 7.25
DEFAULT_Y_DENSITY = 13

LIGATURES = {
    "ﬀ": "ff",
    "ﬃ": "ffi",
    "ﬄ": "ffl",
    "ﬁ": "fi",
    "ﬂ": "fl",
    "ﬆ": "st",
    "ﬅ": "st",
}


class TextMap:
    """
    A TextMap maps each unicode character in the text to an individual `char`
    object (or, in the case of layout-implied whitespace, `None`).
    """

    def __init__(self, tuples: List[Tuple[str, Optional[T_obj]]]) -> None:
        self.tuples = tuples
        self.as_string = "".join(map(itemgetter(0), tuples))

    def match_to_dict(
        self,
        m: Match[str],
        main_group: int = 0,
        return_groups: bool = True,
        return_chars: bool = True,
    ) -> Dict[str, Any]:
        subset = self.tuples[m.start(main_group) : m.end(main_group)]
        chars = [c for (text, c) in subset if c is not None]
        x0, top, x1, bottom = objects_to_bbox(chars)

        result = {
            "text": m.group(main_group),
            "x0": x0,
            "top": top,
            "x1": x1,
            "bottom": bottom,
        }

        if return_groups:
            result["groups"] = m.groups()

        if return_chars:
            result["chars"] = chars

        return result

    def search(
        self,
        pattern: Union[str, Pattern[str]],
        regex: bool = True,
        case: bool = True,
        return_groups: bool = True,
        return_chars: bool = True,
        main_group: int = 0,
    ) -> List[Dict[str, Any]]:

        if isinstance(pattern, Pattern):
            if regex is False:
                raise ValueError(
                    "Cannot pass a compiled search pattern *and* regex=False together."
                )
            if case is False:
                raise ValueError(
                    "Cannot pass a compiled search pattern *and* case=False together."
                )
            compiled = pattern
        else:
            if regex is False:
                pattern = re.escape(pattern)

            flags = re.I if case is False else 0
            compiled = re.compile(pattern, flags)

        gen = re.finditer(compiled, self.as_string)
        # Remove zero-length matches (can happen, e.g., with optional
        # patterns in regexes) and whitespace-only matches
        filtered = filter(lambda m: bool(m.group(main_group).strip()), gen)
        return [
            self.match_to_dict(
                m,
                return_groups=return_groups,
                return_chars=return_chars,
                main_group=main_group,
            )
            for m in filtered
        ]

    def extract_text_lines(
        self, strip: bool = True, return_chars: bool = True
    ) -> List[Dict[str, Any]]:
        """
        `strip` is analogous to Python's `str.strip()` method, and returns
        `text` attributes without their surrounding whitespace. Only
        relevant when the relevant TextMap is created with `layout` = True

        Setting `return_chars` to False will exclude the individual
        character objects from the returned text-line dicts.
        """
        if strip:
            pat = r" *([^\n]+?) *(\n|$)"
        else:
            pat = r"([^\n]+)"

        return self.search(
            pat, main_group=1, return_chars=return_chars, return_groups=False
        )


class WordMap:
    """
    A WordMap maps words->chars.
    """

    def __init__(self, tuples: List[Tuple[T_obj, T_obj_list]]) -> None:
        self.tuples = tuples

    def to_textmap(
        self,
        layout: bool = False,
        layout_width: T_num = 0,
        layout_height: T_num = 0,
        layout_width_chars: int = 0,
        layout_height_chars: int = 0,
        x_density: T_num = DEFAULT_X_DENSITY,
        y_density: T_num = DEFAULT_Y_DENSITY,
        x_shift: T_num = 0,
        y_shift: T_num = 0,
        y_tolerance: T_num = DEFAULT_Y_TOLERANCE,
        use_text_flow: bool = False,
        presorted: bool = False,
        expand_ligatures: bool = True,
    ) -> TextMap:
        """
        Given a list of (word, chars) tuples (i.e., a WordMap), return a list of
        (char-text, char) tuples (i.e., a TextMap) that can be used to mimic the
        structural layout of the text on the page(s), using the following approach:

        - Sort the words by (doctop, x0) if not already sorted.

        - Calculate the initial doctop for the starting page.

        - Cluster the words by doctop (taking `y_tolerance` into account), and
          iterate through them.

        - For each cluster, calculate the distance between that doctop and the
          initial doctop, in points, minus `y_shift`. Divide that distance by
          `y_density` to calculate the minimum number of newlines that should come
          before this cluster. Append that number of newlines *minus* the number of
          newlines already appended, with a minimum of one.

        - Then for each cluster, iterate through each word in it. Divide each
          word's x0, minus `x_shift`, by `x_density` to calculate the minimum
          number of characters that should come before this cluster.  Append that
          number of spaces *minus* the number of characters and spaces already
          appended, with a minimum of one. Then append the word's text.

        - At the termination of each line, add more spaces if necessary to
          mimic `layout_width`.

        - Finally, add newlines to the end if necessary to mimic to
          `layout_height`.

        Note: This approach currently works best for horizontal, left-to-right
        text, but will display all words regardless of orientation. There is room
        for improvement in better supporting right-to-left text, as well as
        vertical text.
        """
        _textmap: List[Tuple[str, Optional[T_obj]]] = []

        if not len(self.tuples):
            return TextMap(_textmap)

        expansions = LIGATURES if expand_ligatures else {}

        if layout:
            if layout_width_chars:
                if layout_width:
                    raise ValueError(
                        "`layout_width` and `layout_width_chars` cannot both be set."
                    )
            else:
                layout_width_chars = int(round(layout_width / x_density))

            if layout_height_chars:
                if layout_height:
                    raise ValueError(
                        "`layout_height` and `layout_height_chars` cannot both be set."
                    )
            else:
                layout_height_chars = int(round(layout_height / y_density))

            blank_line = [(" ", None)] * layout_width_chars
        else:
            blank_line = []

        num_newlines = 0

        words_sorted_doctop = (
            self.tuples
            if presorted or use_text_flow
            else sorted(self.tuples, key=lambda x: float(x[0]["doctop"]))
        )

        first_word = words_sorted_doctop[0][0]
        doctop_start = first_word["doctop"] - first_word["top"]

        for i, ws in enumerate(
            cluster_objects(
                words_sorted_doctop,
                lambda x: float(x[0]["doctop"]),
                y_tolerance,
                preserve_order=presorted or use_text_flow,
            )
        ):
            y_dist = (
                (ws[0][0]["doctop"] - (doctop_start + y_shift)) / y_density
                if layout
                else 0
            )
            num_newlines_prepend = max(
                # At least one newline, unless this iis the first line
                int(i > 0),
                # ... or as many as needed to get the imputed "distance" from the top
                round(y_dist) - num_newlines,
            )

            for i in range(num_newlines_prepend):
                if not len(_textmap) or _textmap[-1][0] == "\n":
                    _textmap += blank_line
                _textmap.append(("\n", None))

            num_newlines += num_newlines_prepend

            line_len = 0

            line_words_sorted_x0 = (
                ws
                if presorted or use_text_flow
                else sorted(ws, key=lambda x: float(x[0]["x0"]))
            )

            for word, chars in line_words_sorted_x0:
                x_dist = (word["x0"] - x_shift) / x_density if layout else 0
                num_spaces_prepend = max(min(1, line_len), round(x_dist) - line_len)
                _textmap += [(" ", None)] * num_spaces_prepend
                line_len += num_spaces_prepend

                for c in chars:
                    letters = expansions.get(c["text"], c["text"])
                    for letter in letters:
                        _textmap.append((letter, c))
                        line_len += 1

            # Append spaces at end of line
            if layout:
                _textmap += [(" ", None)] * (layout_width_chars - line_len)

        # Append blank lines at end of text
        if layout:
            num_newlines_append = layout_height_chars - (num_newlines + 1)
            for i in range(num_newlines_append):
                if i > 0:
                    _textmap += blank_line
                _textmap.append(("\n", None))

            # Remove terminal newline
            if _textmap[-1] == ("\n", None):
                _textmap = _textmap[:-1]

        return TextMap(_textmap)


class WordExtractor:
    def __init__(
        self,
        x_tolerance: T_num = DEFAULT_X_TOLERANCE,
        y_tolerance: T_num = DEFAULT_Y_TOLERANCE,
        keep_blank_chars: bool = False,
        use_text_flow: bool = False,
        horizontal_ltr: bool = True,  # Should words be read left-to-right?
        vertical_ttb: bool = True,  # Should vertical words be read top-to-bottom?
        extra_attrs: Optional[List[str]] = None,
        split_at_punctuation: Union[bool, str] = False,
        expand_ligatures: bool = True,
    ):
        self.x_tolerance = x_tolerance
        self.y_tolerance = y_tolerance
        self.keep_blank_chars = keep_blank_chars
        self.use_text_flow = use_text_flow
        self.horizontal_ltr = horizontal_ltr
        self.vertical_ttb = vertical_ttb
        self.extra_attrs = [] if extra_attrs is None else extra_attrs

        # Note: string.punctuation = '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'
        self.split_at_punctuation = (
            string.punctuation
            if split_at_punctuation is True
            else (split_at_punctuation or "")
        )

        self.expansions = LIGATURES if expand_ligatures else {}

    def merge_chars(self, ordered_chars: T_obj_list) -> T_obj:
        x0, top, x1, bottom = objects_to_bbox(ordered_chars)
        doctop_adj = ordered_chars[0]["doctop"] - ordered_chars[0]["top"]
        upright = ordered_chars[0]["upright"]

        direction = 1 if (self.horizontal_ltr if upright else self.vertical_ttb) else -1

        word = {
            "text": "".join(
                self.expansions.get(c["text"], c["text"]) for c in ordered_chars
            ),
            "x0": x0,
            "x1": x1,
            "top": top,
            "doctop": top + doctop_adj,
            "bottom": bottom,
            "upright": upright,
            "direction": direction,
        }

        for key in self.extra_attrs:
            word[key] = ordered_chars[0][key]

        return word

    def char_begins_new_word(
        self,
        prev_char: T_obj,
        curr_char: T_obj,
    ) -> bool:
        """This method takes several factors into account to determine if
        `curr_char` represents the beginning of a new word:

        - Whether the text is "upright" (i.e., non-rotated)
        - Whether the user has specified that horizontal text runs
          left-to-right (default) or right-to-left, as represented by
          self.horizontal_ltr
        - Whether the user has specified that vertical text the text runs
          top-to-bottom (default) or bottom-to-top, as represented by
          self.vertical_ttb
        - The x0, top, x1, and bottom attributes of prev_char and
          curr_char
        - The self.x_tolerance and self.y_tolerance settings. Note: In
          this case, x/y refer to those directions for non-rotated text.
          For vertical text, they are flipped. A more accurate terminology
          might be "*intra*line character distance tolerance" and
          "*inter*line character distance tolerance"

        An important note: The *intra*line distance is measured from the
        *end* of the previous character to the *beginning* of the current
        character, while the *inter*line distance is measured from the
        *top* of the previous character to the *top* of the next
        character. The reasons for this are partly repository-historical,
        and partly logical, as successive text lines' bounding boxes often
        overlap slightly (and we don't want that overlap to be interpreted
        as the two lines being the same line).

        The upright-ness of the character determines the attributes to
        compare, while horizontal_ltr/vertical_ttb determine the direction
        of the comparison.
        """

        # Note: Due to the grouping step earlier in the process,
        # curr_char["upright"] will always equal prev_char["upright"].
        if curr_char["upright"]:
            x = self.x_tolerance
            y = self.y_tolerance
            ay = prev_char["top"]
            cy = curr_char["top"]
            if self.horizontal_ltr:
                ax = prev_char["x0"]
                bx = prev_char["x1"]
                cx = curr_char["x0"]
            else:
                ax = -prev_char["x1"]
                bx = -prev_char["x0"]
                cx = -curr_char["x1"]

        else:
            x = self.y_tolerance
            y = self.x_tolerance
            ay = prev_char["x0"]
            cy = curr_char["x0"]
            if self.vertical_ttb:
                ax = prev_char["top"]
                bx = prev_char["bottom"]
                cx = curr_char["top"]
            else:
                ax = -prev_char["bottom"]
                bx = -prev_char["top"]
                cx = -curr_char["bottom"]

        return bool(
            # Intraline test
            (cx < ax)
            or (cx > bx + x)
            # Interline test
            or (cy > ay + y)
        )

    def iter_chars_to_words(
        self, ordered_chars: T_obj_iter
    ) -> Generator[T_obj_list, None, None]:
        current_word: T_obj_list = []

        def start_next_word(
            new_char: Optional[T_obj],
        ) -> Generator[T_obj_list, None, None]:
            nonlocal current_word

            if current_word:
                yield current_word

            current_word = [] if new_char is None else [new_char]

        for char in ordered_chars:
            text = char["text"]

            if not self.keep_blank_chars and text.isspace():
                yield from start_next_word(None)

            elif text in self.split_at_punctuation:
                yield from start_next_word(char)
                yield from start_next_word(None)

            elif current_word and self.char_begins_new_word(current_word[-1], char):
                yield from start_next_word(char)

            else:
                current_word.append(char)

        # Finally, after all chars processed
        if current_word:
            yield current_word

    def iter_sort_chars(self, chars: T_obj_iter) -> Generator[T_obj, None, None]:
        def upright_key(x: T_obj) -> int:
            return -int(x["upright"])

        for upright_cluster in cluster_objects(list(chars), upright_key, 0):
            upright = upright_cluster[0]["upright"]
            cluster_key = "doctop" if upright else "x0"

            # Cluster by line
            subclusters = cluster_objects(
                upright_cluster, itemgetter(cluster_key), self.y_tolerance
            )

            for sc in subclusters:
                # Sort within line
                sort_key = "x0" if upright else "doctop"
                to_yield = sorted(sc, key=itemgetter(sort_key))

                # Reverse order if necessary
                if not (self.horizontal_ltr if upright else self.vertical_ttb):
                    yield from reversed(to_yield)
                else:
                    yield from to_yield

    def iter_extract_tuples(
        self, chars: T_obj_iter
    ) -> Generator[Tuple[T_obj, T_obj_list], None, None]:
        ordered_chars = chars if self.use_text_flow else self.iter_sort_chars(chars)

        grouping_key = itemgetter("upright", *self.extra_attrs)
        grouped_chars = itertools.groupby(ordered_chars, grouping_key)

        for keyvals, char_group in grouped_chars:
            for word_chars in self.iter_chars_to_words(char_group):
                yield (self.merge_chars(word_chars), word_chars)

    def extract_wordmap(self, chars: T_obj_iter) -> WordMap:
        return WordMap(list(self.iter_extract_tuples(chars)))

    def extract_words(self, chars: T_obj_list) -> T_obj_list:
        return list(word for word, word_chars in self.iter_extract_tuples(chars))


def extract_words(chars: T_obj_list, **kwargs: Any) -> T_obj_list:
    return WordExtractor(**kwargs).extract_words(chars)


TEXTMAP_KWARGS = inspect.signature(WordMap.to_textmap).parameters.keys()
WORD_EXTRACTOR_KWARGS = inspect.signature(WordExtractor).parameters.keys()


def chars_to_textmap(chars: T_obj_list, **kwargs: Any) -> TextMap:
    kwargs.update({"presorted": True})

    extractor = WordExtractor(
        **{k: kwargs[k] for k in WORD_EXTRACTOR_KWARGS if k in kwargs}
    )
    wordmap = extractor.extract_wordmap(chars)
    textmap = wordmap.to_textmap(
        **{k: kwargs[k] for k in TEXTMAP_KWARGS if k in kwargs}
    )

    return textmap


def extract_text(
    chars: T_obj_list,
    **kwargs: Any,
) -> str:
    chars = to_list(chars)
    if len(chars) == 0:
        return ""

    if kwargs.get("layout"):
        return chars_to_textmap(chars, **kwargs).as_string
    else:
        y_tolerance = kwargs.get("y_tolerance", DEFAULT_Y_TOLERANCE)
        extractor = WordExtractor(
            **{k: kwargs[k] for k in WORD_EXTRACTOR_KWARGS if k in kwargs}
        )
        words = extractor.extract_words(chars)
        lines = cluster_objects(words, itemgetter("doctop"), y_tolerance)
        return "\n".join(" ".join(word["text"] for word in line) for line in lines)


def collate_line(
    line_chars: T_obj_list,
    tolerance: T_num = DEFAULT_X_TOLERANCE,
) -> str:
    coll = ""
    last_x1 = None
    for char in sorted(line_chars, key=itemgetter("x0")):
        if (last_x1 is not None) and (char["x0"] > (last_x1 + tolerance)):
            coll += " "
        last_x1 = char["x1"]
        coll += char["text"]
    return coll


def extract_text_simple(
    chars: T_obj_list,
    x_tolerance: T_num = DEFAULT_X_TOLERANCE,
    y_tolerance: T_num = DEFAULT_Y_TOLERANCE,
) -> str:
    clustered = cluster_objects(chars, itemgetter("doctop"), y_tolerance)
    return "\n".join(collate_line(c, x_tolerance) for c in clustered)


def dedupe_chars(chars: T_obj_list, tolerance: T_num = 1) -> T_obj_list:
    """
    Removes duplicate chars — those sharing the same text, fontname, size,
    and positioning (within `tolerance`) as other characters in the set.
    """
    key = itemgetter("fontname", "size", "upright", "text")
    pos_key = itemgetter("doctop", "x0")

    def yield_unique_chars(chars: T_obj_list) -> Generator[T_obj, None, None]:
        sorted_chars = sorted(chars, key=key)
        for grp, grp_chars in itertools.groupby(sorted_chars, key=key):
            for y_cluster in cluster_objects(
                list(grp_chars), itemgetter("doctop"), tolerance
            ):
                for x_cluster in cluster_objects(
                    y_cluster, itemgetter("x0"), tolerance
                ):
                    yield sorted(x_cluster, key=pos_key)[0]

    deduped = yield_unique_chars(chars)
    return sorted(deduped, key=chars.index)
